Exercise 11

For the following exercises, rewrite the quadratic functions in standard form and give the vertex.

$$
k(x)=3 x^{2}-6 x-9
$$

Solution

Begin by factoring the coefficient of x^{2}.

$$
k(x)=3\left(x^{2}-2 x-3\right)
$$

In order to write this quadratic function in vertex form, it's necessary to complete the square, which makes use of the following algebraic identity.

$$
(x+B)^{2}=x^{2}+2 x B+B^{2}
$$

Notice that $2 B=-2$, which means $B=-1$ and $B^{2}=1$. Add and subtract 1 on the right side within the parentheses and use the identity so that x appears in only one place.

$$
\begin{aligned}
k(x) & =3\left(x^{2}-2 x-3\right) \\
& =3\left[\left(x^{2}-2 x+1\right)-3-1\right] \\
& =3\left[(x+(-1))^{2}-4\right] \\
& =3\left[(x-1)^{2}-4\right] \\
& =3(x-1)^{2}-12
\end{aligned}
$$

Therefore, the vertex of the parabola is $(1,-12)$.

